Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 11(3): 737-746, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38018415

RESUMO

Closely mimicking the hierarchical structural topology with emerging behavioral functionalities of biological neural networks in neuromorphic devices is considered of prime importance for the realization of energy-efficient intelligent systems. In this article, we report an artificial synaptic network (ASN) comprising of hierarchical structures of isolated Al and Ag micro-nano structures developed via the utilization of a desiccated crack pattern, anisotropic dewetting, and self-formation. The strategically designed ASN, despite having multiple synaptic junctions between electrodes, exhibits a threshold switching (Vth ∼ 1-2 V) with an ultra-low energy requirement of ∼1.3 fJ per synaptic event. Several configurations of the order of hierarchy in the device architecture are studied comprehensively to identify the importance of the individual metallic components in contributing to the threshold switching and energy-minimization. The emerging potentiation behavior of the conductance (G) profile under electrical stimulation and its permanence beyond are realized over a wide current compliance range of 0.25 to 300 µA, broadly classifying the short- and long-term potentiation grounded on the characteristics of filamentary structures. The scale-free correlation of potentiation in the device hosting metallic filaments of diverse shapes and strengths could provide an ideal platform for understanding and replicating the complex behavior of the brain for neuromorphic computing.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38048181

RESUMO

Electrochromic windows have gained growing interest for their ability to change their optical state in the visible and NIR ranges with minimal input power, making them energy-efficient. However, material processing costs, fabrication complexity, and poor electrochromic properties can be barriers to the widespread adoption of this technology. To address these issues, electrochromic material and fabrication processes are designed to realize their potential as a cost-effective and energy-efficient technology. In this work, an electrochromic composite material-based ink is synthesized consisting of WO3·H2O nanoplates supported on rGO (reduced graphene oxide) nanosheets (WH-rGO), wherein an optimized amount of rGO (0.05 to 0.5 wt %) is introduced for providing a higher conduction pathway for efficient charge transport without sacrificing the electrochromic performance of WO3·H2O nanoplates. The stable ink dispersion prepared in the study is deposited by spray coating on transparent conducting electrodes over large areas (25 cm2). The WH-rGO nanocomposite (0.4 wt %) results in 43% optical modulation at 700 nm, with bleaching and coloration times of 6 and 8 s, respectively. Interestingly, the device also possesses an electrochemical energy storage capability with an areal capacitance of 16.3 mF/cm2. The electrochromic composite material is successfully translated on tin doped indium oxide (ITO)-coated Al metal mesh hybrid electrodes (T = 80%, Rs = 40 Ω/□) to replace ITO. Finally, an electrochromic device of 5 × 5 cm2 is fabricated by spray-coating the ink on cost-effective ITO/Al-mesh hybrid electrodes. The device displays blue to colorless modulation with an excellent bleaching time of 0.43 s and a coloration time of 2.16 s, making it one among the fast-operating devices fabricated by complete solution processing. This work showcases the economical production of a dual-function electrochromic device, which can be a feasible option as an alternative to existing ITO-based devices in both automotive and infrastructure applications.

3.
Discov Nano ; 18(1): 124, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812259

RESUMO

Integration and scalability have posed significant problems in the advancement of brain-inspired intelligent systems. Here, we report a self-formed Ag device fabricated through a chemical dewetting process using an Ag organic precursor, which offers easy processing, scalability, and flexibility to address the above issues to a certain extent. The conditions of spin coating, precursor dilution, and use of solvents were varied to obtain different dewetted structures (broadly classified as bimodal and nearly unimodal). A microscopic study is performed to obtain insight into the dewetting mechanism. The electrical behavior of selected bimodal and nearly unimodal devices is related to the statistical analysis of their microscopic structures. A capacitance model is proposed to relate the threshold voltage (Vth) obtained electrically to the various microscopic parameters. Synaptic functionalities such as short-term potentiation (STP) and long-term potentiation (LTP) were emulated in a representative nearly unimodal and bimodal device, with the bimodal device showing a better performance. One of the cognitive behaviors, associative learning, was emulated in a bimodal device. Scalability is demonstrated by fabricating more than 1000 devices, with 96% exhibiting switching behavior. A flexible device is also fabricated, demonstrating synaptic functionalities (STP and LTP).

4.
Nanotechnology ; 35(1)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37666214

RESUMO

Neuromorphic devices are a promising alternative to the traditional von Neumann architecture. These devices have the potential to achieve high-speed, efficient, and low-power artificial intelligence. Flexibility is required in these devices so that they can bend and flex without causing damage to the underlying electronics. This feature shows a possible use in applications that require flexible electronics, such as robotics and wearable electronics. Here, we report a flexible self-formed Ag-based neuromorphic device that emulates various brain-inspired synaptic activities, such as short-term plasticity and long-term potentiation (STP and LTP) in both the flat and bent states. Half and full-integer quantum conductance jumps were also observed in the flat and bent states. The device showed excellent switching and endurance behaviors. The classical conditioning could be emulated even in the bent state.

5.
ACS Appl Mater Interfaces ; 15(15): 19111-19120, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37016773

RESUMO

Electrochromic (EC) devices are not commercialized extensively owing to their high cost. The best large-area devices in the market suffer from not reaching a distinct dark-colored state. These devices appear more like a blue tinted glass. While a better performance demands the use of appropriate components, the cost-effectiveness of such components is crucial for commercialization. Specifically, the utilization of cost-effective electrodes, thin WO3 coatings, and inexpensive electrolytes are essential for reducing the cost of EC devices. Here, we report a high-performing porous WO3 thin film (∼130 nm) achieved by optimizing the DC sputtering process parameters. This way, an affordable dual-function EC energy-storage device was fabricated, showing 84% transmittance modulation and a high power density of 3036 mW/m2, thus functioning simultaneously as a transparency switching energy-storage device. With a large-area (900 cm2) device, we have demonstrated that the need for expensive ITO electrodes and Li+ ion-based electrolytes can be eliminated by using a hybrid electrode (ITO/Al-mesh) and multivalent Al3+ ion-based electrolytes while not compromising the device performance. The findings of this study may revolutionize the EC device industry and their commercialization owing to inexpensive ingredients and scalable processing.

6.
Nanoscale ; 15(16): 7450-7459, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37013963

RESUMO

Mimicking synaptic functions in hardware devices is a crucial step in realizing brain-like computing beyond the von Neumann architecture. 1D nanomaterials with spatial extensions of a few µm, similar to biological neurons, gain significance given the ease of electrical transport as well as directionality. Herein, we report a two-terminal optically active device based on 1D supramolecular nanofibres consisting of CS (coronene tetracarboxylate) and DMV (dimethyl viologen) forming alternating D-A (donor-acceptor) pairs, emulating synaptic functions such as the STP (short-term potentiation), LTP (long-term potentiation), PPF (paired-pulse facilitation), STDP (spike-time dependent plasticity) and learning-relearning behaviors. In addition, an extensive study on the less explored Ebbinghaus forgetting curve has been carried out. The supramolecular nanofibres being light sensitive, the potential of the device as a visual system is demonstrated using a 3 × 3 pixel array.

7.
ACS Appl Mater Interfaces ; 15(15): 19270-19278, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-36996388

RESUMO

The detection of ultraviolet (UV) light is vital for various applications, such as chemical-biological analysis, communications, astronomical studies, and also for its adverse effects on human health. Organic UV photodetectors are gaining much attention in this scenario because they possess properties such as high spectral selectivity and mechanical flexibility. However, the achieved performance parameters are much more inferior than the inorganic counterparts because of the lower mobility of charge carriers in organic systems. Here, we report the fabrication of a high-performance visible-blind UV photodetector, using 1D supramolecular nanofibers. The nanofibers are visibly inactive and exhibit highly responsive behavior mainly for UV wavelengths (275-375 nm), the highest response being at ∼275 nm. The fabricated photodetectors demonstrate desired features, such as high responsivity and detectivity, high selectivity, low power consumption, and good mechanical flexibility, because of their unique electro-ionic behavior and 1D structure. The device performance is shown to be improved by several orders through the tweaking of both electronic and ionic conduction pathways while optimizing the electrode material, external humidity, applied voltage bias, and by introducing additional ions. We have achieved optimum responsivity and detectivity values of around 6265 A W-1 and 1.54 × 1014 Jones, respectively, which stand out compared with the previous organic UV photodetector reports. The present nanofiber system has great potential for integration in future generations of electronic gadgets.

8.
ACS Appl Mater Interfaces ; 15(2): 3613-3620, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36606698

RESUMO

Implementing simple and inexpensive energy-saving smart technologies in households is quite effective to accomplish on-demand privacy control and reduction in energy consumption. Conventional smart glasses face difficulty in making inroads into the consumer market due to utilizing expensive active layers, electrolytes, and transparent electrodes. Thus, the need of the hour is to develop an unconventional smart window, which should be cost-effective, power-efficient, and simple to fabricate. Against this backdrop, we report the fabrication of a new class of smart partition windows termed "mist-driven transparency switching glass". The fabrication protocol includes surface energy modification of two glass panes, followed by assembling them into a square or rectangular-shaped narrow cell with appropriate inlets and outlets for mist. In its pristine state, the device is transparent, as expected of two plain glasses forming a cell. Insertion of cool mist into the device produces tiny droplets onto the inner walls due to condensation enabling scattering of light, thereby producing the translucent state. The optimized device shows a transmittance modulation of as much as ∼65% at 550 nm, allowing it to reduce the indoor temperature by more than 30% compared to a regular glass windowpane. To realize commercial viability, a large area device (30 × 30 cm2) was fabricated, which could be operated wirelessly through a cellphone application paving the way for incorporating the Internet of Things into the technology.

9.
Chemistry ; 27(64): 16006-16012, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533243

RESUMO

Properties of metal crystallites are governed by their morphologies and inherent crystal structures. In this work, bipyramidal Au microcrystallites hosting non-cubic lattices, body-centered orthorhombic and tetragonal (together termed as bc(o,t)), are investigated for their stability in aqua regia. Specifically, microcrystallites comprising 92 % of bc(o,t) have been subjected to aqua regia of different concentrations and the changes in morphology and lattice phases have been monitored using scanning electron microscopy and X-ray diffraction techniques. The dissolution process was found to be crystal structure dependent and begin at the bipyramidal tips enriched with fcc lattice while retaining the bc(o,t) rich body. Interestingly, with increasing the reaction times, the remaining core was found to be highly reluctant to dissolution and instead, transformed to tetragonal lattices which with increasing treatment, exhibited lattice parameters closer to that of fcc. The study reveals the presence of a bc(o,t)-fcc core-shell structure with the tips enriched with fcc.

10.
ACS Appl Mater Interfaces ; 12(48): 54203-54211, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33206506

RESUMO

Fabrication protocols of transparent conducting electrodes (TCEs), including those which produce TCEs of high values of figure of merit, often fail to address issues of scalability, stability, and cost. When it comes to working with high-temperature stable electrodes, one is left with only one and that too, an expensive choice, namely, fluorine-doped SnO2 (FTO). It is rather difficult to replace FTO with a low-cost TCE due to stability issues. In the present work, we have shown that an Al nanomesh fabricated employing the crack template method exhibits extreme thermal stability in air even at 500 °C, compared with that of FTO. In order to fill in the non-conducting island regions present in between the mesh wires, a moderately conducting material SnO2 layer was found adequate. The innovative step employed in the present work relates to the SnO2 deposition without damaging the underneath Al, which is a challenge in itself, as the commonly used precursor, SnCl2 solution, is quite corrosive toward Al. Optimization of spray coating of the precursor while the Al mesh on a glass substrate held at an appropriate temperature was the key to form a stable hybrid electrode. The resulting Al/SnO2 electrode exhibited an excellent transparency of ∼83% at 550 nm and a low sheet resistance of 5.5 Ω/□. SnO2 coating additionally made the TCE scratch-proof and mechanically stable, as the adhesion tape test showed only 8% change in sheet resistance after 1000 cycles. Further, to give FTO-like surface finish, the SnO2 surface was fluorinated by treating with a Selectfluor solution. As a result, the Al/F-SnO2 hybrid film exhibited one order higher surface conductivity with negligible sensitivity toward humidity and volatile organics, while becoming robust toward neutral electrochemical environments. Finally, a custom-designed projection lithography technique was used to pixelate the Al/SnO2 hybrid film for optoelectronic device applications.

11.
ACS Appl Mater Interfaces ; 12(33): 37320-37329, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814406

RESUMO

Transparent electronics continues to revolutionize the way we perceive futuristic devices to be. In this work, we propose a technologically advanced volatile organic compound (VOC) sensor in the form of a thin-film transparent display fabricated using fluorinated SnO2 films. A solution-processed method for surface fluorination of SnO2 films using Selectfluor as a fluorinating agent has been developed. The doped fluorine was optimized to be <1%, resulting in a significant increase in conductivity and reduction in persistent photoconductivity accompanied by a faster decay of the photogenerated charge carriers. A combination of these modified properties, together with the intrinsic sensing ability of SnO2, was exploited in designing a transparent display sensor for ppm-level detection of VOCs at an operating temperature of merely 150 °C. Even a transparent metal mesh heater is integrated with the sensor for ease of operation, portability, and less power usage. A sensor reset method is developed while shortening the UV exposure time, enabling complete sensor recovery at low operating temperatures. The sensor is tested toward a variety of polar and nonpolar VOCs (amines, alcohols, carbonyls, alkanes, halo-alkanes, and esters), and it exhibits an easily differentiable response with sensitivity in line with the electron-donating tendency of the functional group present. This work opens up the door for multiplexed sensor arrays with the ability to detect and analyze multiple VOCs with specificity.

12.
ACS Nano ; 14(8): 9456-9465, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32491827

RESUMO

Tuning of crystal structures and shapes of submicrometer-sized noble metals have revealed fascinating catalytic, optical, electrical, and magnetic properties that enable developments of environmentally friendly and durable nanotechnological applications. Several attempts have been made to stabilize Au, knowing its extraordinary stability in its conventional face-centered cubic (fcc) lattice, into different lattices, particularly to develop Au-based catalysis for industry. Here, we report the results from scanning X-ray diffraction microscopy (SXDM) measurements on an ambient-stable penta-twinned bipyramidal Au microcrystallite (about 1.36 µm in length and 230 nm in diameter) stabilized in noncubic lattice, exhibiting catalytic properties. With more than 82% of the crystal volume, the majority crystallite structure is identified as body-centered orthorhombic (bco), while the remainder is the standard fcc. A careful analysis of the diffraction maps reveals that the tips are made up of fcc, while the body contains mainly bco with very high strain. The reported structural imaging technique of representative single crystallite will be useful to investigate the growth mechanism of similar multiphase nano- and micrometer-sized crystals.

13.
J Phys Chem Lett ; 11(8): 2797-2803, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32191478

RESUMO

Twisted multilayer graphene (tMLG), in contrast to twisted bilayer graphene, offers a range of angular rotations for tuning the properties of the system. In this work, a turbostratic graphene system with a high degree of two-dimensional (2D) crystallinity is chosen to represent tMLG. We have investigated the distribution and population of twist angles from distributed sextets in electron diffraction (SAED) patterns with the collective Raman behavior at the same locations. A descriptor, termed the turbostratic factor, was calculated on the basis of angular spacings in SAEDs, to account for their distribution; the greater the spread, the higher the turbostratic factor. Raman spectra have revealed that the turbostratic factor remains low (∼0°) for a graphitic region with a low 2D to G intensity ratio (I2D/IG) and increases rapidly at higher I2D/IG values, saturating at 60° for highly turbostratic systems. Relating the intensities associated with the sextets and I2D/IG values, we found the maximum achievable value of I2D/IG to be 17.92.

14.
Beilstein J Nanotechnol ; 11: 68-75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31976198

RESUMO

A green and facile approach has been developed for the large-scale synthesis of nanosheets of reduced graphene oxide (rGO) and nitrogenated reduced graphene oxide (N-rGO). This has been achieved by direct thermal decomposition of sucrose and glycine at 475 °C in ca. 7 minutes, respectively. The present protocols for synthesizing rGO and N-rGO are simple and environmentally friendly as we do not use any harmful reagents, metal catalysts and solvents. Along with that, this method offers an inexpensive route with high yields to prepare rGO with a high nitrogen content (20-25 atom %). To further improve the properties of the synthesized rGO sheets, hydrogen treatment has been carried out to reduce the oxygen functional groups. Cyclic voltammograms and charge-discharge experiments have been carried out to understand the supercapacitor behavior of rGO and hydrogen treated (H-rGO) samples.

15.
Langmuir ; 35(49): 16130-16135, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31710498

RESUMO

Desiccation of a colloidal layer produces crack patterns because of stress arising out of solvent evaporation. Associated with it is the rearrangement of particles, while adhesion to the substrate resists such movements. The nature of solvent, which is often overlooked, plays a key role in the process as it dictates evaporation and wetting properties of the colloidal film. Herein, we study the crack formation process by using a mixture of solvents, water, and isopropyl alcohol (IPA). Among the various ratios, a water/IPA mixture (15:85 by volume) close to the azeotropic composition possesses unusual evaporation and wetting properties, leading to narrower cracks with widths down to ∼162 nm, uncommon among the known crackle patterns. The dense and narrow crack patterns have been used as sacrificial templates to obtain metal meshes on transparent substrates for optoelectronic applications.

16.
Langmuir ; 35(39): 12630-12635, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532685

RESUMO

The air-water interface is an ideal platform to produce two-dimensional (2D) structures involving anything from simple organic molecules to supramolecular moieties by exploiting hydrophobic-hydrophilic interactions. Here, we show, using grazing incidence X-ray scattering, the formation of a 2D ordered structure of a charge-transfer (C-T) complex, namely, dodecyl methyl viologen (DMV) as acceptor and coronene tetracarboxylate potassium salt (CS) as donor, at the air-water interface. We have observed a phase transition in the 2D ordered structure as the area per molecule is decreased with increasing surface pressure in a Langmuir trough. The high-pressure ordering of the hydrocarbon chains associated with DMV destroys long-range C-T conjugation of DMV and CS at the air-water interface. Our results also explain the formation of DMV-CS cylindrical reverse micelles and eventually long nanowires that get formed in the self-assembly process in the bulk medium to preserve both the C-T conjugation and the organic tail-tail organization.

17.
ACS Appl Mater Interfaces ; 10(50): 44126-44133, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30468065

RESUMO

Monitoring live movements of human body parts is becoming increasingly important in the context of biomedical and human machine technologies. The development of wearable strain sensors with high sensitivity and fast response is critical to address this need. In this article, we describe the fabrication of a wearable strain sensor made of a Au micromesh partially embedded in polydimethylsiloxane substrate. The sensor exhibits a high optical transmittance of 85%. The effective strain range for stretching is 0.02%-4.5% for a gauge factor of over 108. In situ scanning electron imaging and infrared thermal microscopy analysis have revealed that nanometric break junctions form throughout the wire network under strain; strain increases the number of such junctions, leading to a large change in the sheet resistance of the mesh. This aspect has been examined computationally with the findings that wire segments break successively with increasing strain and resistance increases linearly for lower values of strain and nonlinearly at higher values of strain because of formation of current bottlenecks. The semi-embedded nature of these Au microwires allows the broken wires to retract to the original positions, thus closing the nanogaps and regaining the original low resistance state. High repeatability as well as cyclic stability have been demonstrated in live examples involving human body activity, importantly while mounting the sensor in strategic remote locations away from the most active site where strains are highest.


Assuntos
Face , Mastigação , Movimento , Dispositivos Eletrônicos Vestíveis , Humanos
18.
Angew Chem Int Ed Engl ; 57(29): 9018-9022, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29847008

RESUMO

Conventional gold comprising the cubic lattice is universally known for its stability. However, well known to chemists and metallurgists, this nobility is challenged by reagents such as aqua regia, which dissolve gold to form a salt solution. Among metals, mercury blends with gold to form amalgam, otherwise transition metals such as copper tend to interact with gold surfaces in electrochemical media. Herein, we report a combined experimental and theoretical investigation of the stability of Au microcrystallites bearing unconventional crystal lattices that exhibit enhanced stability towards Hg and aqua regia and practically no interaction with Cu during electroless plating. The unconventional gold is undoubtedly nobler.

19.
Chemistry ; 24(30): 7695-7701, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29520888

RESUMO

One-dimensional (1D) nanostructures of π-conjugated molecules exhibiting excellent charge carrier mobilities have attracted much interest for use in organic electronic devices. Although it is tedious to form such structures, the availability of highly delocalized electron and hole carriers in these donor (D)-acceptor (A) coassemblies realize ambipolar charge transport. Here we demonstrate the use of a simple solution casting method to create an ambipolar donor-acceptor single-crystalline assembly. 1D assemblies of 5,10,15,20-tetraphenylporphyrins (H2 TPP, ZnTPP) and fullerene (C60 ) exhibit high ambipolar mobility in the range of 0.8-3.4 cm2 Vs-1 for electrons and holes with high ON/OFF ratio and low threshold voltage. A direct experimental proof for the pivotal role of the central Zn2+ in tetraphenyl porphyrin, which enables a strong D-A charge transfer interaction in the cocrystal and thereby induces electron (1.35 cm2 Vs-1 ), hole (3.42 cm2 Vs-1 ) mobilities, the highest reported for two component D-A assemblies using solution casting, is demonstrated.

20.
ACS Appl Mater Interfaces ; 9(37): 32065-32070, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28853547

RESUMO

Memorizing the magnitude of a physical parameter such as relative humidity in a consignment may be useful for maintaining recommended conditions over a period of time. In relation to cost and energy considerations, it is important that the memorizing device works in the unpowered passive state. In this article, we report the fabrication of a humidity-responsive device that can memorize the humidity condition it had experienced while being unpowered. The device makes use of supramolecular nanofibers obtained from the self-assembly of donor-acceptor (D-A) molecules, coronene tetracarboxylate salt (CS) and dodecyl methyl viologen (DMV), respectively, from aqueous medium. The fibers, while being highly sensitive to humidity, tend to develop electrically induced disorder under constant voltage, leading to increased resistance with time. The conducting state can be regained via self-assembly by exposing the device to humidity in the absence of applied voltage, the extent of recovery depending on the magnitude of the humidity applied under no bias. This nature of the fibers has been exploited in reading the humidity memory state, which interestingly is independent of the lapsed time since the humidity exposure as well as the duration of exposure. Importantly, the device is capable of differentiating the profiles of varying humidity conditions from its memory. The device finds use in applications requiring stringent condition monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...